
Naval Research Laboratory
Washington, DC 20375-5320

Java Program
Development
Course Notes

Michael G. Vonk
(202)767-3884
michael.vonk@nrl.navy.mil

Instructor:

July 31, 1998

Java Program Development

Introduction ...1

Class Format ..2

1. Applets and Applications ..3
1.1. Java Applications ...3
1.2. Java Applets ..4
1.3. Program Development Cycle ...6
1.4. Why Java?..7

2. Object-Oriented Programming (Part One)8
2.1. Terminology..8
2.2. Variable Scope ..10
2.3. Methods ...12
2.4. Constructors..13
2.5. Method Overloading ...15
2.6. Objects Summary ...16

3. Language Details ...17
3.1. Variables and Data Types ...17
3.2. Arrays...21
3.3. Type Conversion ..23
3.4. Argument Passing..24
3.5. Java Syntax ..24
3.6. Operators ...25
3.7. Control Structures ..26

4. Applet Details ..28
4.1. Applet Life Cycle..28
4.2. Applet Context and Status ..29
4.3. Passing Arguments to Applets...30
4.4. Applet Security Restrictions ...30

5. Basic Drawing ..31
5.1. Graphics Context..31
5.2. Coordinate System ...32
5.3. Drawing Methods ..33
5.4. Fonts ...35
5.5. Colors ...36

July 31, 1998

Java Program Development

6. Graphical User Interface Components..37
6.1. Abstract Windowing Toolkit ..38
6.2. Labels ...40
6.3. Push Buttons ...41
6.4. Example ...42
6.5. Text Fields ...44
6.6. Text Areas..45
6.7. Checkboxes..46
6.8. Checkbox Groups...47
6.9. Choice Buttons..48
6.10. Lists ..49
6.11. Scrollbars ...50
6.12. Canvases ..51

7. Event Handling ..52
7.1. Event Objects...52
7.2. Event Handling Methods..53

8. Laying Out Components ..57
8.1. FlowLayout ...58
8.2. GridLayout ..59
8.3. BorderLayout ..60
8.4. Grouping Components in Panels...61
8.5. CardLayout ...62
8.6. Component Sizing..64
8.7. Sizing Components using Preferred Size65
8.8. Layout Strategies ..66

9. Additional Components...67
9.1. Frames..67
9.2. Dialog Boxes..71
9.3. File Dialogs..72
9.4. Menus...73

10. Object Oriented Programming (Part Two)74
10.1. Data Hiding...74
10.2. Inheritance...75
10.3. Packages...78

July 31, 1998

Java Program Development

11. Input and Output...79
11.1. Streams...79
11.2. Console I/O...80
11.3. File I/O ..81
11.4. Web Server I/O ..84
11.5. Common Escape Sequences..86

12. Multithreading...87
12.1. Extending the Thread Class..87
12.2. Implementing the Runnable Interface...................................88
12.3. Writing Thread Safe Code...90
12.4. Controlling Thread Execution ..92
12.5. Communicating Between Threads ..94

13. Multimedia ...96
13.1. Loading Images ..96
13.2. Displaying Images..97
13.3. Playing Audio Clips...98

References ..99

Summary ..100

1

Java Program Development

Introduction

This course introduces Java—a portable, object-oriented
programming language and supporting run-time environment.
Java can be used to create dynamic, interactive Web pages
(applets) and standalone applications. Java was created by
James Gosling of Sun Microsystems and was formally
announced in May 1995.

Topics to be covered in this course include:

• applets, applications, and the Java program
development cycle

• object-oriented programming in Java
• language details, data types, and control structures
• graphical user interfaces and the Abstract Windowing

Toolkit (AWT)
• input, output, and multimedia
• the Java Application Programming Interface (API)

Some prior programming experience, although in no particular
language, is expected as a prerequisite for this class.

Programs developed in this class were tested using version 1.0.2
of the Java API and Sun’s Java Development Kit (JDK).

Note: Version 1.1 (or later) of the Java API is now
available, and should be used for all new program
development.

2

Java Program Development

Class Format

This class is designed to be covered in a series of modules (each
with their own lab session) over a period of three days:

Module

Day 1 1. Applets and Applications
2. Object-Oriented Programming (Part One)
3. Language Details
4. Applet Details
5. Basic Drawing

Day 2 6. GUI Components
7. Event Handling
8. Component Layout
9. Additional Components

Day 3 10. Object Oriented Programming (Part Two)
11. Input and Output
12. Multithreading
13. Multimedia

A Web page containing all the examples from this class, as well
as pointers to additional information is available at:

http://amp.nrl.navy.mil/
 code5595/ccs-training/java

3

Java Program Development

1. Applets and Applications

Java programs can be written as either standalone "applications"
(executed from the command line) or as "applets" that execute in
a Web browser.

1.1. Java Applications

The following example is the ubiquitous "hello world" program
written as a standalone application:

Example 1 HelloApplication.java

This program consists a "class" definition (every Java program
has at least one) containing a single "method" (main) to print a
message on the screen.

Java source files must be named "classname .java " and are
compiled (javac) into a platform-independent "bytecode" for-
mat to create "class files." Standalone applications are executed
by passing the main class file to the Java interpreter (java):

% javac HelloApplication.java
% java HelloApplication
Hello world...
%

class HelloApplication {
 static public void main(String args[]) {
 System.out.println("Hello world...");
 }
}

① Main method (always
 declared exactly as shown)

4

Java Program Development

1.2. Java Applets

Java applets can be used to create dynamic, interactive Web
pages. There are two steps in this process—first the applet code
must be written and compiled; then the class file is referenced
from an HTML file.

The following example shows the "hello world" program
written as a Java applet:

Example 2 HelloApplet.java

Java provides a number of predefined classes, one of which is
the Applet class, which serves as a template for displaying and
interacting with applets via a Web browser. The HelloApplet
class above "extends" the functionality of the Applet class to
paint the hello message into a window on the browser.

Applets are compiled into class files as before:

% javac HelloApplet.java

import java.applet.Applet;
import java.awt.*;

public class HelloApplet extends Applet {
 public void paint(Graphics g) {
 g.drawString("Hello world...",50,100);
 }
}

① Java class libraries
 ("packages")

② Applets always extend
 (inherit from) the Applet
 class

5

Java Program Development

The HTML applet tag is used to reference an applet’s class file,
creating an area on the Web page for the applet with a specified
width and height:

Example 3 HelloApplet.html

The HTML file containing the applet can be viewed within a
browser. Use shift-reload to refresh the page if changes have
been made.

The Java Development Kit’s (JDK) appletviewer* program can
also be used to display an applet:

% appletviewer HelloApplet.html

Appletviewer requires an HTML file to load an applet.

* Note: Due to problem specific to our X terminal setup,
appletviewer does not work properly in the CCS
training room.

<title>Hello World Applet</title>
Hello world applet:<p>

<applet code = "HelloApplet.class"
 width = "150"
 height = "100">
</applet>

6

Java Program Development

1.3. Program Development Cycle

Sun’s Java Development Kit (JDK) is freely available (see the
companion page for reference) and runs on a variety of systems.
It includes a compiler, interpreter, and appletviewer.

The following diagram summarizes the steps in the Java
development cycle:

Edit

Compile

Execute

Create "classname .java "

Load class file, verify bytecodes (checking
validity and security), and interpret

Compile "classname .java " into
bytecodes, creating file "classname .class ":
 javac classname .java

Standalone
Application

java classname

Applet

Web Browser
Link to or open URL

Appletviewer
appletviewer URL

 Create Web page:
<applet code=" classname .class"
 width= w
 height= h>
</applet>

7

Java Program Development

1.4. Why Java?

Java is an important new programming paradigm for several
reasons:

• Platform independence—the Java Virtual Machine (JVM),
which translates Java programs into native machine code,
provides a standard interface across all platforms

• Simplicity—Java is a streamlined successor to C/C++,
with several harmful features removed and additional fea-
tures added, including standardized class libraries

• Safety—Java applets have several security restrictions (no
pointers to access random memory, no access to local files,
robust exception handling, bytecode verification, etc.)

• High performance—"just in time" and native machine
architecture compilers can be used to achieve speeds rival-
ing that of C++

Applets and Applications

Java Base and Standard
Extension Libraries

Java Virtual MachineJava
Run-Time

Environment Browser
OS

Hardware

OS

Hardware

JavaOS

Hardware

JavaOS

Hardware

Browser Workstation JavaOS JavaOS
on a

Microchip

8

Java Program Development

2. Object-Oriented Programming (Part One)

In this section, we introduce object-oriented terminology as
used in Java and develop some basic examples.

2.1. Terminology

Classes in an object-oriented programming language are similar
to user-defined data types in traditional languages. However, in
addition to containing data, classes also contain methods for
operating on that data.

Classes are used to define a group of objects which share similar
attributes and behavior:

Class Object template—defines a set of
variables and methods that operate on
those variables

Class Instance An actual object

Writing a program involves constructing a set of classes. During
execution, the actual instances of these classes (the "objects") are
created.

Classes are comprised of two components:

Variables Define the attributes of a particular
object or of the class as a whole

Methods Define the operations that can be
performed on an individual object or
on all objects in the class

9

Java Program Development

Example (Part 1)

Suppose we want to keep track of the cars we own (assuming
we could afford more than one). We might be interested in the
following:

• the attributes (make, model, etc.) of each car
• the total number of cars (a class-wide attribute)
• being able to get a description of each car (a method)

These details could be encoded into a class definition as follows:

Example 4 Car.java

Later on we will write a program that will create car objects, set
their attributes, and print their descriptions.

// Car template
class Car {
 String make,
 model;

 static int numCars = 0;

 // Method for returning car description
 public String toString() {
 String description;
 description = make + " " + model;
 return description;
 }
}

① "Instance" variables

② "Class" variable

③ Local variable

10

Java Program Development

2.2. Variable Scope

Variables define the attributes of an individual object or of a
class of objects. Java has three kinds of variables:

Instance Variables Define attributes of a particular object
(eg. the make of a specific car). Each
class instance (object) has its own
copy of all instance variables.

Class (or "Static") Represent "class-wide" attributes
Variables (eg. the number of cars). Only one

copy of a class variable exists.

Local Variables Store temporary information for use
in a method; reinitialized each time the
method is called.

Instance variables can be accessed directly (within the class
definition itself) or through an object:

make
myCar.make

Class variables can be accessed directly, through an object of its
class, or through the class name:

numCars
myCar.numCars
Car.numCars

Local variables are only accessible inside the method in which
they are defined.

11

Java Program Development

Example (Part 2)

We will now write a program that uses our Car class definition
to create a new car, which involves the following steps:

1. Declaring an object
2. Creating ("instantiating") the object using the new

command
3. Setting object and class-wide attributes

Methods related to the object can also be called.

Example 5 CarTest.java

class CarTest {
 static public void main(String args[]) {
 // Declare and create a new car
 Car myCar;
 myCar = new Car();

 // Set attributes
 myCar.make = "Mazda";
 myCar.model = "MX-3";
 Car.numCars = Car.numCars + 1;

 // Print car information
 System.out.println("My car is a " +
 myCar.toString());
 System.out.println("Number of cars: " +
 Car.numCars);
 }
}

① Refer to instance
 variables through object

② Refer to class
 variables through class

12

Java Program Development

2.3. Methods

Methods define the behavior of an object—what happens when
an object is created and other operations that can be performed
on the object. There are two types of methods:

Instance Methods Apply to a particular object (eg. to
return a description of a specific car).
An instance method is simply referred
to as a "method."

Class (or "Static") Apply to the class as a whole (eg. to
Methods return the total number of cars).

Method definitions have four* basic parts:

1. Method name
2. Return type (or void)
3. Parameter list
4. Body

A method’s name, return type, and parameter list are referred to
as its "signature." Several methods can have the same name, but
different signatures. This is known as "method overloading."

* Note: Methods can also have an access qualifier
(which specifies who can execute the method) and
a throws clause (which defines what errors the
method might generate).

13

Java Program Development

2.4. Constructors

A special type of method called a "constructor" is used to
initialize objects. Constructor methods aren’t called directly—
they are invoked automatically each time an object of that class
is instantiated. Constructors have the same name as the class:

Car newCar = new Car();

Every class has at least one constructor. If you don’t define your
own, a Java-supplied default constructor is invoked which takes
no arguments and performs no special initialization.

The following constructor could be added to the Car class :

public Car(String theMake,String theModel) {
 make = theMake;
 model = theModel;
 numCars = numCars + 1;
}

Rather than creating a new car object, setting its attributes, and
incrementing the car total in separate steps, our new constructor
can be called:

Car newCar = new Car("Mazda","Miata");

Notes: Unlike regular methods, constructor methods don’t
have a return type.

Writing your own constructor hides the default
(no argument) constructor.

14

Java Program Development

2.4.1. The this Keyword

Local variables effectively hide instance variables of the same
name. The this keyword refers to the current object and can be
used to reference the "hidden" instance variable. For example:

public Car(String make,String model) {
 this.make = make;
 this.model = model;
 numCars = numCars + 1;
}

The this keyword can be used only in the body of instance
methods.

2.4.2. Class Methods

Class ("static") methods apply to the class as a whole. For
example:

public static void incrementNumCars() {
 numCars = numCars + 1;
}

Static methods can be called without having to instantiate an
object. They do not need any data except what they are passed
as arguments and whatever static variables are defined in the
class. Because static methods do not apply to individual class
instances (objects), they have some restrictions:

• Static methods cannot access non-static variables or
methods

• There is no this keyword in class methods

15

Java Program Development

2.5. Method Overloading

Methods in Java can be overloaded—ie. you can create several
methods with the same name, but with different signatures and
different definitions. Method overloading is used if a piece of
code logically performs the same function, but has a different
number or type of arguments.

For example, the Car constructor shown previously could be
overloaded:

public Car(String make,String model) {
 this.make = make;
 this.model = model;
 numCars = numCars + 1;
}

public Car() {
 numCars = numCars + 1;
}

When you call an overloaded method, Java matches up the
method name and number, type, and order of arguments to
choose which method is executed.

Many system defined methods are "polymorphic." For example,
the println() method can take as an argument a string, an
integer, or any of several other data types.

Note: You cannot change only the return type—this results
in a compiler error. Variable names in the parameter
list are irrelevant.

16

Java Program Development

2.6. Objects Summary

Objects model real-world objects or abstract objects (such as
events). There are several steps in the design of a class of objects.
You must define their:

1. Attributes
"instance variables" pertain to individual objects
"class variables" pertain to the class as a whole

2. Behavior
"instance methods" operate on individual object
"class methods" operate on the class as a whole

New objects must first be declared and then are "instantiated" by
calling their class’s "constructor" method (which performs any
necessary initialization).

Where methods logically perform the same functionality on
different types of arguments, "polymorphism" is used to "overload"
a method’s definition.

Additional aspects object oriented programming will be dis-
cussed in Object Oriented Programming (Part Two), including:

• "encapsulation" (hiding class details from users)
• "inheritance" (defining a new "subclass" by extending

a previously defined "superclass")
• "packages" (class libraries)

17

Java Program Development

3. Language Details

When beginning to program in any language, there are
several basic things which you must learn—what data types are
available, how to declare variables and arrays, how to convert
between data types, and how to specify operators and control
structures.

3.1. Variables and Data Types

Java is a "strongly-typed" language—all variables must be
declared to be of a specific type, which can be any of the
following:

• a primitive data type
• a class name (ie. the variable is an object)
• a string (a special type of object)
• an array

3.1.1. Variable Declarations

Variable declarations consist of a type and a variable name:

int age;
Car myCar;
String name;

Variables can be initialized on the declaration statement:

int age = 35;
String name = "Michael";

Note: Declarations can be intermingled with code.

18

Java Program Development

Constants can be declared by using the keyword final and
specifying an initial value:

final float PI = 3.14;
static final int MAXCARS = 20;

Local variables must be given values before they are used or a
compiler error will be generated. Instance and class variables do
not have this restriction and have default values based on their
type:

null for class instances (objects)
0 for numeric variables
’\0’ for character variables
false for boolean variables

3.1.2. Naming Conventions

Java is "case sensitive." Although not required, certain naming
conventions make Java programs more readable:

• Constants are in uppercase (PI)
• Class names are capitalized (Car)
• Variable and method names have initial lowercase

letters (myCar)

Identifier names can consist of letters, digits, underscores, or
dollar signs. They cannot, however, begin with a digit. Names
are often made up of several words, with the first word lower-
case, and subsequent words capitalized:

Button theSelectedButton;

19

Java Program Development

3.1.3. Primitive Data Types

The following primitive data types are available:

type size (bits)

Integer byte 8 All integers are signed
short 16
int 32
long 64

Real float 32 IEEE floating point format
double 64

Character char 16 ISO Unicode character set

Boolean boolean 1 true or false
(booleans are not numbers
and cannot be treated as
such)

Primitive data types are "machine independent"—sizes and
characteristics are consistent across all operating systems and
architectures.

Notes: Real literals (like 23.79) are considered double by
default (you could use 23.79f to make it a float)

Character literals are enclosed in apostrophes
(strings are enclosed in quotation marks)

20

Java Program Development

3.1.4. Objects

Creating objects is a two-step process—first you declare a
variable to be of a particular class and then you use the new
keyword to instantiate the object:

Circle c;
c = new Circle();

In the first step, only a reference to a Circle object is created. The
second step actually creates an instance of the class. These two
steps can be combined in one statement as follows:

Circle c = new Circle();

3.1.5. Strings

There are two types of string objects in Java—String (read
only) and StringBuffer (modifiable). Strings are instantiated
as follows:

String hello = "Hello world...";

The length of a string can be found using its length() method:

length = hello.length();

21

Java Program Development

3.2. Arrays

To use an array, you first declare the type of data it will contain,
and then allocate memory for its contents. Array declaration
can be performed using any of the following:

datatype array-name [];
datatype [] array-name ;
datatype [] array-name [];

The brackets can be placed after the variable name, after the type
specifier, or both. All are equivalent (although the first method
is preferred). For example, to declare an array of Point s:

Point myPoints[];

At this point, the only storage allocated is a reference to the
array. To allocate storage for the elements of the array, use the
new keyword and specify the array length:

myPoints = new Point[10];

The declaration and allocation steps can be combined as follows:

Point myPoints[] = new Point[10];

22

Java Program Development

3.2.1. Array Initialization

The elements of an uninitiallized array have the following
default values:

0 for numeric primitive data types
false for boolean variables
’\0’ for character arrays
null for everything else

Arrays can be initialized during allocation as follows:

String names[] = {"jim", "sue", "john"};

Array length is determined from the number of initializers.

3.2.2. Accessing Array Elements

Individual array elements are accessed via their (zero-based)
subscripts:

names[2] = "steve";

Array "bounds checking" is performed automatically—attempts
to access elements outside array bounds generate run-time
exceptions.

3.2.3. Array Length

The number of elements in an array can be found using length :

numPoints = myPoints.length;

Note: There are no parantheses after length .

23

Java Program Development

3.2.4. Multi-Dimensional Arrays

Java does not directly support multi-dimensional arrays. They
can be faked, however, by allocating arrays of arrays:

int coords[][] = new int[12][12];
coords[1][2] = 1;

int b[][] = { {1,2,3},
 {2,3,4} };

3.3. Type Conversion

Java’s "type wrapper" classes provides a means of converting
strings to numbers:

int i = Integer.valueOf("406").intValue();
float f = Float.valueOf("3.1").floatValue();
double d =

 Double.valueOf("1.23").doubleValue();

Numbers can be converted to strings using:

String.valueOf(myNumber);

Each type in a mixed-type numeric expression is promoted to
the "highest" type in the expression. Converting to a "lower"
type can lead to loss of precision and incorrect results. To do
so, you must explicitly call a "cast" operator:

intResult = (int) myFloat / myInt;

Objects can be converted to strings using either the Object class’s
or your own toString() method.

24

Java Program Development

3.4. Argument Passing

Passing arguments to a method occurs in one of two ways:

• Primitive types are passed "by value" (a copy of the
argument is passed—you cannot change the original)

• Objects are passed "by reference" (a pointer to the original
data is passed—changes made within the method affect
data in the calling method)

Arrays are treated as objects. Individual array elements (if of a
primitive data type), however, are passed by value.

3.5. Java Syntax

Several other Java language details should be noted:

• all statements end in semicolons
• compound statements, or blocks, can be placed wherever

a single statement can be placed and are surrounded by
{} ; variables can be declared for use within blocks

Three types of comment delimiters can be used:

// comment single line comments (continue until
end of line)

/* comment */ multi-line comments (can’t be nested)
/** comment */ special comments used with javadoc

25

Java Program Development

3.6. Operators

The following operators are available in Java:

Refer to a precedence table for order of evaluation (or use
parantheses to explicitly specify order).

* Note: Comparison operators cannot be used with objects
or strings—use object1 .equals(object2)

String + concatenation (ints ⇒ strings)
Numeric +

-
*
/ int / int ⇒ int, otherwise real
% modulus (yields integer)

Comparison* == !=
< <=
> >=

Boolean && || and/or (short circuit)
& | and/or (non-short circuit)
^ exclusive or
! not

Assignment a op= b; shorthand for a = a op b;

Autoincrement
(decrement)

a++ a--
++a --a

Cast (datatype) variable

Conditional test ? a : b

26

Java Program Development

3.7. Control Structures

Java’s conditional and looping constructs are similar to those
used in C:

Condition if (condition1) {
statement-block

}
else if (condition2) {

statement-block
}
else {

statement-block
}

Switch switch (test) {
 case one : statement-list ;
 break;
 case two : statement-list ;
 break;

.

.

.

 default: statement-list ;
 break;
}

Looping for (init ; condition ; increment) {
statement-block

}

while (condition) {
statement-block

}

27

Java Program Development

Several points about these control structures must be noted:

• The condition evaluated must be a boolean value.
• The switch test must be a simple primitive type that is

castable to int (you cannot use long or float or objects).
• Single statements can be used instead of the bracket-

enclosed statement blocks shown above. This can, how-
ever, lead to the "dangling-else" problem.

• The following two statements can be used for loop control:

continue jump to next iteration of loop
break terminate loop

28

Java Program Development

4. Applet Details

In this section we discuss several aspects specifically
related to Java applets—their life cycle, context, customization,
and security restrictions.

4.1. Applet Life Cycle

Applets don’t have a programmer-supplied main method. The
main method is defined in the browser and provides a means of
interacting with the user. The following diagram shows the four
methods called in the life cycle of an applet:

These four "milestone" methods are used as follows:

• init() Used to initialize the applet (create GUI compo-
nents, load sounds/images, and create threads)

• start() Called when the page is first visited and every
time the browser returns to the page (start or
restart animations and threads, etc.)

• stop() Called when the page is left (stop animations
and threads)

• destroy() Called when the applet is garbage collected
(release any other resources)

init start stop destroy

Visit Page

Return to Page

Leave Page

Discard Applet

29

Java Program Development

Other frequently called methods:

• paint(Graphics g)
Called after init() is finished and start has
begun executing to draw (paint) the applet.
Called automatically every time applet needs
to be redrawn.

• repaint() Schedules call to component’s update method.
Can be used to call the paint method explicitly
to redraw the applet.

• update() Responsible for redrawing applet, default ver-
sion redraws background and then calls paint.

Applet always begin with a series of three method calls—init,
start, and paint. All of the methods discussed above do nothing
if not redefined (overridden) by the programmer.

4.2. Applet Context and Status

The following two methods return information about an applet:

• getCodeBase() Returns URL of directory containing
the applet’s class file

• getDocumentBase() Returns URL of directory containing
the Web page referencing the applet

Applets can display messages in the browser’s status bar using:

showStatus("Applet starting...");

30

Java Program Development

4.3. Passing Arguments to Applets

Applets can be customized by specifying a list of arguments to
be passed to the applet via the HTML param tag:

<applet code=" xxx .class" width= w height= h>
<param name="user" value="John Doe">
</applet>

The param tag must appear between applet tags. Each param-
eter has a name and value. The getParameter() method is
used to get a parameter’s value:

String theValue = getParameter("user");

4.4. Applet Security Restrictions

Applets have certain restrictions (that standalone applications
don’t have) that help prevent them from causing damage to the
system or security breaches. These restrictions include:

• applets can’t read or write to the local file system
• applets can’t communicate with a server other than the

one from which it came
• applets can’t run programs on or load libraries from the

local system
• applets can’t read certain system properties
• applet windows are marked as "untrusted"

31

Java Program Development

5. Basic Drawing

The AWT Graphics package provides methods to draw text,
shapes, and images. To do so, you must understand what is
known as the "graphics context," Java’s coordinate system, the
various drawing methods, and how to select fonts and colors.

5.1. Graphics Context

Every user interface component (including the applet window)
has an associated graphics context, which defines:

• component on which to draw
• translation origin
• clipping rectangle
• current color
• current font
• current paint mode (replace or XOR)
• current XOR alternation color

In the Hello World applet, the paint method takes one argument,
the graphics context associated with the applet window:

public void paint(Graphics g) {
 g.drawString("Hello world...",50,100);
}

The graphics context (object) will be named "g" in the examples
in this section.

32

Java Program Development

5.2. Coordinate System

Java’s coordinate system starts in the upper left-hand corner of
the component with point (0,0) and is measured in pixels. X val-
ues increase to the right and y values increase downward:

In the figure above, a rectangle is drawn with the upper-left
corner at coordinate (4,2) and a width and height of 4 and 3,
respectively. The method used to draw this rectangle would
be:

g.drawRect(4,2,4,3);

Note: Drawing occurs below and to the right of the specified
point—the rectangle above appears one pixel wider
and taller than you might expect. This applies to other
outlined shapes as well. Filled shapes are drawn inside
the specified rectangle, making them one row shorter
and skinnier than their outlined counterparts.

(0,0)
5

5

10

(4,2)

(8,5)

X Axis

Y Axis

33

Java Program Development

5.3. Drawing Methods

Basic drawing methods include:

Text g.drawString(string , x, y)

Lines g.drawLine(x1 , y1 , x2 , y2)

Rectangles g.drawRect(x, y, width , height)
g.fillRect(x, y, width , height)
g.clearRect(x, y, width , height)

Rounded
Rectangles

g.drawRoundRect(x, y, width ,
height , arcWidth , arcHeight)

g.fillRoundRect(x, y, width ,
height , arcWidth , arcHeight)

3D Rectangles g.draw3DRect(x, y, width , height ,
 boolean)
g.fill3DRect(x, y, width , height ,
 boolean)

Ovals g.drawOval(x, y, width , height)
g.fillOval(x, y, width , height)

Arcs g.drawArc(x, y, width , height ,
startAngle , arcAngle)

g.fillArc(x, y, width , height ,
startAngle , arcAngle)

Polygons g.drawPolygon(x[], y[], n)
g.fillPolygon(x[], y[], n)

34

Java Program Development

Several points should be noted when using the basic drawing
methods:

• Strings are drawn above and to the right of the specified
point.

• Outlined shapes are one pixel taller and wider than their
corresponding filled shapes.

• 3D rectangles have an additional argument which is used
to specify a raised rectangle (if true) or lowered rectangle
(if false). Shadows are highlighted in a color determined
by Java, and may not show up if drawing in black on a
white background, or vice versa.

• The upper-left corner of rectangles, ovals, and arcs is
specified along with a width and height (both of which
must be positive). The following could be used to draw
a rectangle, given any two points:

 g.drawRect(Math.min(x1,x2),
 Math.min(y1,y2),
 Math.abs(x1-x2),
 Math.abs(y1-y2));

• The AWT does not currently support line widths (can
simulate by drawing multiple lines at one pixel offsets or
by drawing filled rectangles).

• The AWT also does not support fill or line patterns.

35

Java Program Development

5.4. Fonts

Any font available on the local system can be used to draw
text. A new Font object must first be created, and then the font
associated with the current graphics context can be set:

Font myFont;
myFont = new Font(fontName , style , size);
g.setFont(myFont);

Commonly available fonts include "Courier", "Helvetica", and
"Times Roman". Three styles are available:

• Font.PLAIN
• Font.BOLD
• Font.ITALIC

Font size is measured in points (1 point = 1/72 inch).

A list of available font names can be obtained using the current
Toolkit object’s getFontList() method:

Toolkit tk = getToolkit();
String fontList[] = tk.getFontList();

36

Java Program Development

5.5. Colors

Two colors affect drawing—a component’s background color
and the current drawing color, both of which can be changed
easily using Color objects. RGB color values can be specified
using either integer for floating point numbers:

Color myColor = new Color(0,0,255);
Color newColor = new Color(0.12,0.76,0.05));

Integer values are in the range 0-255. Floating point values in
the range 0.0-1.0 may also be specified, but are internally con-
verted to integers. A set of 13 predefined color constants is also
available, including:

Color.blue
Color.orange

The drawing and background colors can be set as follows:

g.setColor(myColor);
setBackground(Color.lightGray);

The getColor() method can be used to obtain the current
drawing color. Integer values of a color’s RGB triplet can
also be obtained:

currentColor = g.getColor();
redValue = currentColor.getRed();
greenValue = currentColor.getGreen();
blueValue = currentColor.getBlue();

Note: Component background color is set using the
component’s methods, not the graphics object.

37

Java Program Development

6. Graphical User Interface Components

A Graphical User Interface (GUI) is used to control interaction
between the user and a Java applet or window-based applica-
tion. GUIs are built from components (also called "widgets")
including push buttons, text fields, lists, and menus.

The following sequence of steps are used with components:

• declaring and creating components
• assigning component attributes
• adding components to a container
• writing event handling code

For components to be visible, they must be added to a
container (such as an applet or window). A default (or user-
specified) layout manager arranges components within contain-
ers. Events, generated when components are selected, are
handled by event handling code.

The following sections describe the various components, layout
managers, and event handling methods.

38

Java Program Development

6.1. Abstract Windowing Toolkit

The Abstract Windowing Toolkit (AWT) provides a generalized
set of classes for building graphical user interfaces and can be
used without concern for platform-specific windowing issues:

• Uses the native window system, i.e. Motif, MS Windows
• Subtlely different behavior between window systems can

produce subtlely different behavior for your application
from system to system

• Java supports “highest common factor” (or “lowest
common denominator”) of all supported native window
toolkits

Platform independence is made possible through the use of
AWT classes known as "peers" (native GUI components which
are manipulated by the AWT classes). The AWT delegates the
actual rendering and behavior of components to these peers.

Use of peers enables applets and applications to retain "look and
feel" of the native windowing system.

Java
Program AWT

Peer
Compo-

nents

Native
Window
System

Programmer’s Side Java Development Kit
Technician’s Side

39

Java Program Development

The AWT is comprised of four major parts:

• A set of components
• A set of containers—objects that hold components
• A set of predefined layout managers used in positioning

component within containers
• A set of simple graphics operations (discussed in the

previous module)

The following diagram illustrates the AWT class hierarchy as it
relates to the following modules:

Note: Applets are a special type of panel, and thus can
contain components.

Object

CanvasCheckbox

Component

Text
Button ContainerScrollbarLabel

Window

TextField
Frame

Panel

Dialog

FileDialog

ListChoice

TextArea

Component

EventCheckboxGroup

40

Java Program Development

6.2. Labels

Labels are single-line, readonly text fields.

The following declares and creates a new Label, and adds it to
the interface:

Label myLabel;
myLabel = new Label("This is a Label");
add(myLabel);

This could be shortened to:

Label myLabel = new Label("This is a Label");
add(myLabel);

Normally you declare GUI components global with respect to
the class so they can be referenced in event handling code.
However, since labels do not generate events, the following
could be used:

add(new Label("This is a Label"));

Constructors Label()
Label(String s)

Public Methods String theText = getText()
setText(String s)

Events none

41

Java Program Development

6.3. Push Buttons

Push buttons are labeled rectangles which generate events when
clicked with the mouse.

The following declares, creates, and adds a button:

Button myButton;
myButton = new Button("My Button");
add(myButton);

Note: Only the most commonly used constructors and
public methods are listed in the tables in these notes.
Consult the Java API documentation for a complete
list.

Constructors Button()
Button(String s)

Public Methods String theLabel = getLabel()
setLabel(String s)

Events action event generated when user clicks on
button

42

Java Program Development

6.4. Example

The following is a fully functional applet which displays a
button and handles button selections:

Example 6 ButtonApplet

import java.applet.Applet;
import java.awt.*;

public class ButtonApplet extends Applet {
 // Declare components as global to class
 Button myButton;
 TextArea events;

 // Create user interface
 public void init() {
 // Initialize and add button to layout
 myButton = new Button("My Button");
 add(myButton);

 // Create text area to display event
 events = new TextArea(5,30);
 add(events);
 }

 // Handle component action events
 public boolean action(Event e,Object o) {
 if (e.target == myButton) {
 events.appendText("My button pressed...\n");
 return true;
 }
 else {
 return false;
 }
 }
}

43

Java Program Development

The ButtonApplet example above illustrates the general
sequence of steps followed when adding GUI components to the
interface:

1. Components are declared global to the class so they
can be referenced in all methods of the class (specifically
the event handling method).

2. Components are instantiated and added to the interface in
the init() method, which is called once when the applet
is initialized.

3. Component events are handled either in an action()
method or in a handleEvent() method.

Components are automatically painted—you do not have to
draw them in a paint() method. Event handling is described
in detail in the following module.

Note: DO NOT instantiate and add components in the
paint() method, as it is called numerous times
during an applet’s life cycle.

44

Java Program Development

6.5. Text Fields

Text fields allow users to enter a single line of text. Pressing
"Enter" or "Return" in a text field generates an event.

The following declares, creates, and adds a text field:

// In global declaration section
TextField myTextField;

// In init() method
myTextField = new TextField(20);
add(myTextField);

Note: Even though a TextField can be specified as readonly
(using setEditable(false)), it still generates
events.

Constructors TextField()
TextField(int cols)
TextField(String s)
TextField(String s,
 int cols)

Public Methods setEditable(boolean)
setEchoCharacter(char c)
setText(String s);
String myText = getText()
String myText = getSelectedText()

Events action event generated when user presses
Enter or Return in field

45

Java Program Development

6.6. Text Areas

Multi-line text input area with vertical and horizontal scrollbars
(users can enter as many lines of text as they want).

The following declares, creates, and adds a four row by 40
column text area:

TextArea comments;

comments = new TextArea(4,40);
add(comments);

TextAreas do not generate events when the return key is pressed
(thus allowing newlines to be entered by user). Retrieving text
from a TextArea requires an external event, such as a button
press.

Constructors TextArea()
TextArea(int rows,
 int cols)
TextArea(String s)
TextArea(String s,
 int rows,
 int cols)

Public Methods setEditable(boolean)
setText(String s);
String myText = getText()
String myText = getSelectedText()

Events none

46

Java Program Development

6.7. Checkboxes

Checkboxes are used to get boolean values from the user.

The following declares, creates, and adds two checkboxes:

Checkbox fries,
 coke;

fries = new Checkbox("Fries");
coke = new Checkbox("Coke");
add(fries);
add(coke);

Any number of (ungrouped) checkboxes can be checked by the
user. CheckboxGroups (see next page) can be used to allow only
one selection from a group of checkboxes.

Constructors Checkbox(String label)
Checkbox(String label,
 CheckboxGroup cbg,
 boolean selected)

Public Methods setState(boolean);
boolean state = getState();
String myLabel = getLabel();

Events action event generated when user checks a
box (the state of a box can also be probed)

47

Java Program Development

6.8. Checkbox Groups

A set of checkboxes can be grouped together to function as
"radio buttons." No more than one checkbox in a checkbox
group can be selected at a time.

The following declares, creates, and adds a group of two
checkboxes:

CheckboxGroup cbg;
Checkbox mc,
 visa;

cbg = new CheckboxGroup();
mc = new Checkbox("MasterCard",cbg,false);
visa = new Checkbox("Visa",cbg,false);
add(mc);
add(visa);

The Checkboxes above take three arguments—a label, a check-
box group object, and a boolean value indicating whether the
checkbox is selected by default or not.

Constructors CheckboxGroup()

Public Methods Checkbox cb = getCurrent()
setCurrent(Checkbox cb)

Events none (events are generated by the individual
checkboxes)

48

Java Program Development

6.9. Choice Buttons

A choice button (a.k.a. "popup menu") allows the user to select
a single item from a list:

Choice buttons are used by first declaring and creating a Choice
object, adding items to it, and finally adding the Choice object to
the interface:

Choice cars;

cars = new Choice();
cars.addItem("Mazda");
cars.addItem("Volkswagen");
cars.addItem("BMW");
add(cars);

Only one item (the first by default) is displayed at a time.
When the user presses the popup menu’s down arrow, the full
list appears from which the user may select.

Constructors Choice()

Public Methods addItem(String s)
int numItems = countItems()
String item = getItem(int index)
String item = getSelectedItem()
int index = getSelectedIndex()

Events action event generated when user releases
mouse button over choice item

49

Java Program Development

6.10. Lists

Lists are used to display a long list of items, one per line, along
with a scroll bar. By default, only one selection can be made:

The following declares, creates, and adds items to a list and then
adds the list to the interface:

List condiments;

condiments = new List(3,true);
condiments.addItem("ketchup");
condiments.addItem("mustard");
condiments.addItem("relish");
add(condiments);

Notes: Extraneous list select and deselect events occur
when an item is double-clicked.

An external event is generally used to trigger an
action with lists that allow multiple selections.

Constructors List(int numVisibleLines)
List(int numVisibleLines,
 boolean multipleSelections)

Public Methods addItem(String s)
String item = getItem(int index)
String items[] =
 getSelectedItems()

Events action event generated when user double-
clicks on an item; list select or deselect event
generated if user single-clicks on an item

50

Java Program Development

6.11. Scrollbars

Scrollbars allow users to easily select from a range of values
using a "slider":

* Scrollbar.VERTICAL or Scrollbar.HORIZONTAL

Three types of scrollbar selections can be made. Users can:

1. Click on the left (right) arrow to decrease (increase) the
scrollbar value by one

2. Click in the area to the left (right) of the slider to decrease
(increase) the scrollbar value by one block increment

3. Drag the slider left or right

The following declares, creates, and adds a horizontal scrollbar:

Scrollbar sb;

sb = new Scrollbar(Scrollbar.HORIZONTAL,
 0,100,0,1000);
add(sb);

Constructors Scrollbar(orientation * ,
 int initial-value,
 int block-increment,
 int minimum-value,
 int maximum-value)

Public Methods int value = getValue()

Events a scrollbar adjustment event is generated if
user changes the value of the scrollbar

51

Java Program Development

6.12. Canvases

Canvases are normally used to provide a drawing area within
an applet. Rather than creating a new canvas component, the
canvas class is usually subclassed:

class CanvasSubclass extends Canvas {
 .
 .
 .

}

Three methods of the Canvas class are typically overridden:

• preferredSize()

• minimumSize()

• paint()

The first two of these methods are used to size the canvas. The
paint method is where all drawing occurs:

class CanvasSubclass extends Canvas {
 public void paint(Graphics g) {
 g.drawString("Hello",10,25);
 }
 public Dimension minimumSize() {
 return new Dimension(50,50);
 }
 public Dimension preferredSize() {
 return minimumSize();
 }
}

52

Java Program Development

7. Event Handling

An "event loop" is the basis of any Java applet or window-based
standalone application. Programs draw their components on
the screen and wait for and respond to events that occur within
these components. For example, users may click the mouse on
a button, select from a list, or drag the mouse in a canvas.

7.1. Event Objects

Event objects are used by event handling methods and have the
following fields:

id type of event (there are currently 27 events
types), such as KEY_PRESS

target component for which the event is intended
when time event occurred
x,y location of cursor when event occurred
key for keyboard events, identifies the key that

was pressed
modifiers state of control, meta, and shift keys
clickCount for mouse down events, specifies number of

consecutive clicks
arg Event specific information, such as a selected

button’s label
evt pointer to next event in queue (used by

system)

53

Java Program Development

7.2. Event Handling Methods

When an event occurs inside a component, a method of that
component is invoked. Their are two ways to respond to an
event. You can either:

• Override the handleEvent() method
• Override one of the Java-supplied "convenience" methods

You can also choose not to handle an event by either passing it
on to the component’s container or by simply ignoring it.

7.2.1. Overriding handleEvent()

The handleEvent() method can be used to handle all types of
events. You can perform actions based on the event’s type (id),
the component for which the event was intended (target), or
the type of component (instanceof).

For example:

public boolean handleEvent(Event e) {
 switch (e.id) {
 case Event.KEY_PRESS:
 // Handle key press event
 ...
 case Event.KEY_RELEASE:
 // Handle key release event
 ...
 etc.
 }
}

You only need to check those events in which you are interested.

54

Java Program Development

7.2.2. Using Convenience Methods

Events of all types can be handled using handleEvent() .
Java supplies several additional "convenience" methods that can
also be used to handle specific types of events:

boolean action(Event,Object)

boolean mouseUp(Event,int,int)
boolean mouseDown(Event,int,int)
boolean mouseDrag(Event,int,int)
boolean mouseMove(Event,int,int)
boolean mouseEnter(Event,int,int)
boolean mouseExit(Event, int, int)

boolean keyUp(Event,int)
boolean keyDown(Event, int)

boolean gotFocus(Event, Object)
Boolean lostFocus(Event, Object)

The following GUI components generate "action" events:

• Button
• Checkbox
• TextField
• Choice

55

Java Program Development

Events generated within these components can be handled via
the Event.ACTION_EVENT case in handleEvent() , or via the
action convenience method:

public boolean action(Event e,Object o) {
 // Handle component action event
 ...
}

The action method takes an additional Object argument which
differs depending on what type of component is targetted:

If the event is from an
instance of:

Then the object is set to a:

Button String with the text of label of the
button.

Checkbox Boolean value—true if checkbox is
selected and false if it isn’t.

TextField String value of text field.
Choice String value of selected item.
List String value of selected (deselected)

item

56

Java Program Development

7.2.3. Event Propagation

Both handleEvent() and action() require you to return a
boolean value to indicate if the event has been handled or not.
You may return:

Notes: Return true if you have completely handled the
event, otherwise:

• Return false in convenience methods
• Return super.handleEvent(e) if you are

overriding handleEvent()

true indicates event has been
completely handled

false propagates event to its container
super.handleEvent(e) lets superclass handle event and

decide whether to propagate

57

Java Program Development

8. Laying Out Components

In the previous modules, we learned how to create GUI
components, add them to the interface, and handle the events
they generate. In this module, we learn to how to control the
arrangement of components within the interface.

The AWT provides five "layout managers," each with their
own rules for positioning and sizing components:

For all but the most trivial cases, these layout managers are, by
themselves, inadequate. However, by grouping components
into panels, each taking advantage of the characteristics of their
own layout manager, attractive interfaces can be created.

FlowLayout Adds components left to right, top to
bottom (default layout manager for applets
and panels)

BorderLayout Adds components to North, South, East,
and West borders and Center of container
(default for frames and dialogs)

GridLayout Adds components to grid of equal-sized
cells

CardLayout Breaks down interface into a deck of "cards,"
only one of which is visible at a time (each
card has its own layout manager)

GridBagLayout Similar to GridLayout, except cells do not
need to be the same size (the most precise,
and complicated, of the available layouts)

58

Java Program Development

8.1. FlowLayout

With FlowLayout (the default layout manager for applets and
panels), components are added from left to right, starting new
rows as necessary:

The FlowLayout layout manager can be set for a container
(such as an applet) in the init() method. Components are
then added, as follows:

setLayout(new FlowLayout());
add(componentA);
add(componentB);
 .
 .
 .

By default, components are centered within each row. Left or
right justification can be specified when the FlowLayout object
is created. For example:

setLayout(new FlowLayout(FlowLayout.LEFT));

Note: Each component gets only as much space as it needs.

A

E F

DCB

59

Java Program Development

8.2. GridLayout

With GridLayout, you specify a number of rows and columns.
The container is then broken up into a table (grid) of equal-sized
cells:

The following can be used to specify a three-row, two-column
grid of components:

setLayout(new GridLayout(3,2));
add(componentA);
add(componentB);
 .
 .
 .

Note: The grid fills the entire container. Components are
stretched (or shrunk) to fill the space within their cells.

A

C

E

B

D

F

60

Java Program Development

8.3. BorderLayout

BorderLayout (the default for frames and dialogs) is used to
add components to the North, East, South, and West sides of a
container, with another component in the Center:

The following can be used to specify BorderLayout and add
components:

setLayout(new BorderLayout());
add("North",componentA);
add("East",componentB);
 .
 .
 .

Notes: Components are resized to fill the entire container.

The North and South components are stretched
horizontally from the left edge to the right. The East
and West components are stretched vertically from the
bottom of the North component to the top of the South.
The Center component expands to fill the remaining
space.

A

ED

C

B

61

Java Program Development

8.4. Grouping Components in Panels

The layout managers discussed so far are good for laying out
small sets of components. To create more complex layouts, com-
ponents can be grouped together into "panels," with each panel
using its own layout manager.

The above interface cannot be created using a single layout
manager. We must group the two right components into a panel
and then add the list and right panel to the interface:

// Create panel and set its layout manager
Panel rightPanel = new Panel();
rightPanel.setLayout(new BorderLayout());

// Add text area and button to panel
rightPanel.add("Center",myText);
rightPanel.add("South",myButton);

// Set applet layout and add list and panel
setLayout(new GridLayout(1,2));
add(myList);
add(rightPanel);

Button

TextArea
List

62

Java Program Development

8.5. CardLayout

CardLayout is analogous to a deck of playing cards:

• You can only see one "card" at a time
• Shuffling to a new "card" requires some event to happen
• Each "card" is typically a panel with its own layout

manager

The following example contains two panels. The top panel is
layed out using CardLayout and contains two "cards," only one
of which is visible at a time. The bottom panel contains two
buttons to control which card is displayed:

The following sequence of steps could be used to create this
interface:

• Create panels for Card "1" and Card "2"
• Create cardPanel using CardLayout and add card panels
• Create controlPanel containing previous and next buttons
• Add cardPanel and controlPanel to interface

Comments:

Prev

cardPanel

Next

Name:

Email:

Card "1"

Card "2"

63

Java Program Development

The cardPanel is created as follows:

cardPanel = new Panel();
cardPanel.setLayout(cl);
cardPanel.add("1",card1);
cardPanel.add("2",card2);

Each card is added to cardPanel using a String identifier
(normally a sequence of numbers as shown above). Because the
CardLayout object is referenced in the event handler, it is
declared global to the class:

CardLayout cl = new CardLayout();

The following event handler code processes previous and next
button presses and sequences through the cards to be displayed
in cardPanel:

// Handle previous and next button events
public boolean action(Event e, Object o) {
 if (e.target == previous) {
 cl.previous(cardPanel);
 return true;
 }
 else if (e.target == next) {
 cl.next(cardPanel);
 return true;
 }
 return false;
}

64

Java Program Development

8.6. Component Sizing

Depending on the layout manager used, components may be
resized horizontally and/or vertically to fill the container. The
following table shows, for each layout manager, whether a com-
ponent’s preferred size is either respected or ignored:

As you can see, components layed out using FlowLayout are
not resized at all. Using BorderLayout, certain components are
resized in certain directions.

FlowLayout Width and height preferences respected
(a component’s preferred size when using
FlowLayout is the minimum size that will
hold the component)

BorderLayout Varies depending on location:

• North and South components’ height
preference respected, width ignored

• East and West components’ width
preference respected, height ignored

• Center component’s height and width
preferences ignored

GridLayout Width and height preferences ignored
CardLayout Width and height preferences ignored
GridBagLayout Varies depending on component’s

GridBagConstraints

65

Java Program Development

8.7. Sizing Components using Preferred Size

When using either GridLayout or BorderLayout, components
are automatically resized to fill their container. A component’s
preferredSize() method can be overridden (by subclassing
the component) to control sizing.

For example, the Button class could be subclassed to specify a
preferred size:

class SizedButton extends Button {
 public SizedButton(String label) {
 super.setLabel(label);
 }
 public preferredSize() {
 return new Dimension(150,20);
 }
}

Subclassed buttons could then be declared, created, and added
to the interface as follows:

SizedButton newButton;

newButton = new SizedButton("Sized");
add("East",newButton);

A minimumSize() method is also defined, but is ignored most
of the time.

66

Java Program Development

8.8. Layout Strategies

Laying out the user interface can be one of the most challenging
aspects of Java programming. Following are a couple of tips for
creating useful interfaces:

1. Take advantage of each layout manager’s strengths:

• FlowLayout is good for laying out components you
do not want resized

• BorderLayout is good when you want one component
to expand and fill the remainder of a container (place
this component in the "Center")

• GridLayout is good when you want equally-sized
components

• CardLayout is good when you have several
"screenfuls" of components, but only one is visible
at a time

2. Group components into panels, each using their own
layout manager

3. Subclass components to override their preferred size
when necessary

Note: Most layout situations can be handled using the
four layout managers described here. A fifth layout
manager, GridBagLayout, is also provided by the
AWT, but is much more complex.

67

Java Program Development

9. Additional Components

Frames and dialog boxes are subclasses of Window, which is a
subclass of Container. Therefore, you can add components to a
frame or dialog box just like you would to an applet.

9.1. Frames

Frames are used to create free-standing windows, either to add
an additional window to an applet, or to create a graphical user
interface for a standalone application:

In order to distinguish applet frames from other windows,
a warning message is displayed. This message may appear as
follows:

• "Unsigned Java Applet Window"
• "Warning: Applet Window"

Constructors Frame()
Frame(String title)

Public Methods setTitle(String t)
setLayout(LayoutManager lm)
add(Component c)
resize(int w,int h)
move(int x,int y)
show()
hide()
dispose()

Events Window events generated

68

Java Program Development

Frame objects themselves can be created. In order to respond to
window events, however, a subclass of Frame is created.

Example 7 FrameSubclass.java

import java.awt.*;

class FrameSubclass extends Frame {
 // Assume we are in an applet
 boolean inAnApplet = true;

 // Constructor method
 public FrameSubclass() {
 // Set title, size, and move into position
 setTitle("My Frame");
 resize(300,200);
 move(250,350);

 // Add components
 add("North",new Label("This is my Frame"));
 add("Center",new TextArea(4,20));
 }

 // Handle window events
 public boolean handleEvent(Event e) {
 if (e.id == Event.WINDOW_DESTROY) {
 hide();
 dispose();
 if (!inAnApplet)
 System.exit(0);
 return true;
 }
 return super.handleEvent(e);
 }
}

69

Java Program Development

The following steps are used to create frame:

• instantiate a new Frame subclass object
• set the frame’s layout (the default is BorderLayout)
• add components to the frame
• size the frame and move it into position
• make the frame visible

The Frame subclass can then be used to create a window in a
standalone application or to add an additional window to an
applet.

Example 8 FrameApplication.java

Note: To exit properly from an application, we use the
System.exit() method. This need not be called
in an applet, so we keep track of the program type
using the inAnApplet variable.

class FrameApplication {
 public static void main(String args[]) {
 // Create and show frame
 FrameSubclass myFrame = new FrameSubclass();
 myFrame.show();

 // Set inAnApplet variable
 myFrame.inAnApplet = false;
 }
}

70

Java Program Development

The following creates a frame in an applet:

Example 9 FrameApplet.java

The application and applet are similar and can be combined:

Example 10 Combination.java

import java.applet.Applet;
import java.awt.*;

public class FrameApplet extends Applet {
 public void init() {
 FrameSubclass myFrame = new FrameSubclass();
 myFrame.show();
 }
}

import java.applet.Applet;
import java.awt.*;

public class Combination extends Applet {
 public void init() {
 createFrame(true);
 }

 public static void main(String args[]) {
 createFrame(false);
 }

 public static void createFrame(boolean inAnApplet) {
 FrameSubclass myFrame = new FrameSubclass();
 myFrame.inAnApplet = inAnApplet;
 myFrame.show();
 }
}

71

Java Program Development

9.2. Dialog Boxes

Dialog boxes are used to gather simple input from the user or to
display status, alert, or warning messages. Dialog boxes are
similar to frames, but cannot contain a menu bar. Dialog boxes
may be modal—all other use of the application is blocked until
the dialog box is dealt with.

Modal dialog boxes cannot be moved and do not allow users to
switch to other windows in the same program.

Constructors Dialog(Frame f,
 boolean isModal)
Dialog(Frame f,
 boolean isModal,
 String title)

Public Methods setResizable(boolean b)
setLayout(LayoutManager lm)
add(Component c)
resize(int w,int h)
move(int x,int y)
show()

Events none

72

Java Program Development

9.3. File Dialogs

FileDialog is a subclass of Dialog that brings up the native file
chooser, allowing a filename to be selected. Most useful in
applications due to file access restrictions in applets:

Example 11 FileDialog.java

String to retrieve the filename:

String s = fd.getFile();

File dialogs look quite different on different operating systems.

Note: FileDialogs were too buggy to use in 1.02 but have
improved dramatically in 1.1.

import java.awt.*;

public class fd {
 static Frame f = new Frame(“my frame”);

 public static void main(String[] a) {
 FileDialog fd =
 new FileDialog(f, “my filedialog”);
 fd.show();
 f.add(fd)
 f.show();
 }
}

73

Java Program Development

9.4. Menus

MenuBars are components that can be added to the top edge
of a Frame. (MenuBars cannot be added to the applet window.)
A MenuBar can consist of many individual pull-down menus,
which themselves are made up of menu items.

MenuBar mb;
Menu fileMenu;

mb = new MenuBar();
fileMenu = new Menu();
fileMenu.add("New");
fileMenu.add("Open...");
fileMenu.add("Save");
fileMenu.add("Save As...");
fileMenu.add("-");
fileMenu.add("Quit");

mb.add(fileMenu);
setMenuBar(mb);

Menus can be nested. For example, a submenu could be created
and added to the fileMenu above. Checkbox menu items are
also available.

74

Java Program Development

10. Object Oriented Programming (Part Two)

10.1. Data Hiding

Accessibility of variables and methods can be restricted in order
to hide unimportant implementation details of a class. Variables
are typically made "private" and are accessible only through
pairs of public "set" and "get" methods.

This "encapsulation" of a class’s variables has two benefits:

• Modularity Algorithms can be changed and improved
without changing a class’s usage or appear-
ance to the outside world

• Robustness Data can be validated in the "set" method
and results properly formatted in the "get"
method

Variable and method access specifiers:

• public Accessible anywhere the object can be seen
• private Accessible only by the object itself or by

other objects of the same class
• protected Accessible only by objects in the same pack-

age (directory) as the class and by objects in
a subclass of the class

• unspecified Accessible to anything in the same
(or "friendly")package, but not to any sub-
classes that are in different packages

By default, classes can only be used by other classes in the same
package. Specifying a class as public allows the class to be
used anywhere.

75

Java Program Development

10.2. Inheritance

Classes can be created from scratch or by extending existing
classes, inheriting their variables and methods. Subclasses can
add instance variables and methods of their own. They can also
override (redefine) the superclass’s variables and methods.

For example, the Car class defined previously can be extended
to define specific types of cars:

A coupe could thus be defined as follows:

class Coupe extends Car {
 float topSpeed;
 int numDoors = 2;
}

Subclasses can access public, protected, and "friendly" members
(variables and methods) of its superclass, but not their private
members.

Notes: Every object of a subclass is also a member of its
superclass. Multiple levels of inheritance can occur.

Classes can be declared final , meaning they cannot
be subclassed.

Car

Coupe Sedan StationWagon

76

Java Program Development

10.2.1. Subclass Constructors

When creating a new subclass object, a no argument constructor
of its superclass (either the default no-argument constructor or
a programmer defined no-argument constructor) is called first,
followed by the subclass constructor.

One exception to this calling of the superclass’s no-argument
constructor is if the superclass constructor is referenced in the
first line of the subclass constructor:

public Coupe(String make,
 String model,
 float topSpeed) {
 super(make,model);
 this.topSpeed = topSpeed;
}

In this case the superclass constructor specified using the super
keyword is called first. This allows us to initialize superclass
variables as well as subclass variables.

10.2.2. Method Overriding

A subclass can "override" a superclass method to provide a
specialized implementation. For example, Car’s toString()
method could be overridden in the Coupe subclass:

public String toString() {
 return numDoors + " door " +
 make + " " +
 model + " coupe " +
 "(top speed " + topSpeed + " mph)";
}

77

Java Program Development

10.2.3. The Object Class

Actually, classes are never really created from scratch. Every
class inherits from java.lang.Object , the root of the class
hierarchy. The Object class defines the basic state and behavior
that all object must have.

Methods that the Object class provides include:

• toString() Returns the name of the class (typically
overridden in programmer-defined
classes)

• clone() Creates an exact clone of an object in its
present state (Netscape applets cannot
use clone for security reasons)

• equals() Tests whether two objects are equal to
each other in all respects (not the same
as ==, which tests if two objects are the
same object)

• getClass() Returns a class descriptor of an object
that you use to test the type of a partic-
ular object at runtime

78

Java Program Development

10.3. Packages

Groups of related classes can be organized into a class library, or
in Java terminology, a "package." This makes objects both easier
to find and to use, and avoids naming conflicts. (Packages can
also contain interface definitions.)

To use the classes and interfaces defined in one package from
within another package, you need to import the package. For
example:

import java.applet.Applet;
import java.awt.*;

The first line imports a specific class from the java.applet
package. The second line import all classes from java.awt. The
java.lang package is required by almost every Java program,
and is automatically imported for you.

A package can be defined as follows:

package addresses;

public class Person {...}

public class AddressBook {...}

The ".class " files corresponding to the class definitions in the
package must be placed in a directory with same name as the
package (in this case "addresses ") and must be included
somewhere in your CLASSPATH definition.

The default package (a package with no name) is always
imported for you.

79

Java Program Development

11. Input and Output

Java’s I/O system is very flexible, allowing you to read from
and write to the console, files on the local system, and files on a
Web server.

11.1. Streams

In Java, all input and output requires the use of a stream object,
three or which are created automatically for console I/O:

• System.in

• System.out

• System.err

These streams (along with FileInputStreams and FileOuput-
Streams used with file I/O) allow you to read or write data byte
by byte. To make I/O easier, one of the following filters can be
"chained" to one of the more basic streams:

• DataInputStream reads primitive data types
• DataOutputStream writes primitive data types
• PrintStream writes ASCII text

Other types of streams perform buffered I/O, line-numbered
I/O, and I/O between pipes (allowing threads of execution to
communicate).

Notes: I/O frequently cause IOExceptions to be thrown—
try-catch blocks must be used (except when writing
to the console).

80

Java Program Development

11.2. Console I/O

Lines of data can be read from the console by first chaining a
DataInputStream object to the System.in stream and then using
the DataInputStream object’s readLine() method:

Example 12 ConsoleIO.java

This example also shows the use of System.out’s print()
and println() methods (println() automatically appends
a newline character).

Note: PrintStreams (such System.out and System.err)
are buffered. Data remaining in the buffer when a
program crashes is not written, possibly leading you
to think the program crashed at some other point.
The buffer can be flushed using:

 System.out.flush()

try {
 DataInputStream myInput =
 new DataInputStream(System.in);

 System.out.print("Enter your name: ");
 String name = myInput.readln();
 System.out.println("Hello " + name);
}
catch (IOException e) {
 System.err.println("IOException: " + e);
}

81

Java Program Development

11.3. File I/O

Files are opened by creating FileInputStream and FileOutput-
Stream objects. DataInputStream and DataOutputStream filters
can then be used to perform I/O of primitive data types.

11.3.1. Reading From a Local File

The following code snippet demonstrates how to read data line
by line from a file on the local file system:

Example 13 ReadFile.java

String line;
try {
 DataInputStream input =
 new DataInputStream(
 new FileInputStream("quote.txt"));

 while ((line = input.readLine()) != null)
 System.out.println(line);

 input.close();
}
catch (IOException e) {
 System.err.println("IOException: " + e);
}

82

Java Program Development

11.3.2. Writing To a Local File

The following example writes lines to a local file:

Example 14 WriteFile.java

In this example, if "out.dat" already exists, it will be overwritten.
There is no means of writing at the end of a sequential file.

When using chained stream objects, the outermost object should
be used to close the file.

output.close();

Note: Random access to files is also possible, enabling
instant access to individual records. Random access
files are usually created using fixed length records.

try {
 PrintStream output =
 new DataOutputStream(
 new FileOutputStream("out.dat"));

 output.println("Help me...");

 output.close();
}
catch (IOException e) {
 System.err.println("IOException: " + e);
}

83

Java Program Development

11.3.3. Local File Information

The File class can be used to gather information about a local
file. First we create a new File object for the file in which we are
interested:

public File(pathname);
public File(directoryString , filename);
public File(directoryFile , filename);

Once we have a file object, we can invoke its various methods.
For example:

Example 15 FileStatus.java

File theFile = new File("quote.txt");

if (theFile.exists()) {
 if (theFile.isFile()) {
 lastModified = theFile.lastModified();
 length = theFile.length();
 }

 else if (theFile.isDirectory()) {
 String dir[] = theFile.list();
 }
 else
 System.out.println("Not regular file");

else {
 System.out.println("File doesn’t exist");
}

84

Java Program Development

11.4. Web Server I/O

Java allows applets and applications to display Web pages in the
browser, and also to read and write files on a Web server.

11.4.1. Displaying Web Pages

The following example displays a Web page:

Example 16 DisplayPage.java

The getAppletContext() method returns an object
representing the applet’s environment, ie. browser. The URL
constructor must be called in a try-catch block, or a throws
clause must be specified on the method definition.

try {
 URL myPage = new URL(urlString);
}
catch (MalformedURLException e) {
 System.err.println(e);
}
getAppletContext().showDocument(myPage);

85

Java Program Development

11.4.2. Reading a File on a Server

The following example demonstrates how a Web server file can
be read:

Example 17 ReadServerFile.java

In this example, we create a URL object and then use its
openStream() method to open a connection to the file.

String line;
try {
 URL url = new URL(someURLstring);
 DataInputStream input =
 new DataInputStream(url.openStream());

 while ((line = input.readln()) != null)
 System.out.println(line);

 input.close();
}
catch (MalformedURLException e) {
 System.err.println("MalformedURL: " + e);
}
catch (IOException e) {
 System.err.println("IOException: " + e);
}

86

Java Program Development

11.4.3. Writing a File on a Server

Writing to a URL is not directly supported. It can be accom-
plished indirectly, however, by "posting" data to a CGI script
running on the server. This works as follows:

1. Create a URL.
2. Open a connection to the URL.
3. Get an output stream from the connection. This output

stream is connected to the standard input stream of the
CGI script on the server.

4. Write to the output stream.
5. Close the output stream.

11.5. Common Escape Sequences

Escape sequences can be used to output special characters,
including:

\n newline
\t tab
\r return (to beginning of current line)
\’ apostrophe
\" quotation mark

87

Java Program Development

12. Multithreading

Threads (an abbreviation for “threads of control”) are the way to
get more than one thing to happen at once in a program. There
are a variety of reasons why this would be desirable. For exam-
ple, you might want your program to be able to respond to its
GUI while working on some other task or design a client/server
program where the program spawns new threads in response to
separate client requests. Threads are also closely related to par-
allel processing which may be implemented on certain multi-
processor machines.

There are two ways to obtain a new thread, by extending
java.lang.Thread or by implementing the Runnable interface.

12.1. Extending the Thread Class

Extend class java.lang.Thread and override “run() ”:

class MyThreadClass extends Thread {
 public void run() {
 ...
 }
}

Overriding the run() method is necessary. run() is not called
directly; it is run for you and behaves like a call to main() .
Threads do not start running on creation:

MyThreadClass x = new MyThreadClass();

88

Java Program Development

You start the thread by calling the start() method as in
x.start() or in one step, like this:

new MyThreadClass().start();

which in turn will execute the run() method of your threaded
class. The Thread class includes methods to stop() , sleep() ,
suspend() , resume() , setPriority() , getPriority() ,
etc.

12.2. Implementing the Runnable Interface

You can not extend the Thread class in an applet since applets
already extend class Applet by definition (you are not allowed
to subclass more than one class). You can, however, implement
the Runnable interface which looks similar to the extension of
the Thread class:

class MyThreadClass implements Runnable {
 public void run() {
 ...
 }
}

Unfortunately the methods in the Thread class are not available
to a non subclass of Thread. In order to kludge around this, you
must create a new object from the Thread class and pass it your
Runnable class:

Thread th = new Thread(new MyThreadClass());

Note: you still cannot call Thread methods from with the
Runnable interface implementation.

89

Java Program Development

A simple example of a threaded application:

Example 18 drinks.java

public class drinks {
 public static void main (String[] a) {
 new Beer().start();
 new Wine().start();
 }
}

class Beer extends Thread {
 public void run() {
 while (true) {
 System.out.println(
 “I’ll have a beer”);
 yield();
 }
 }
}

class Wine extends Thread{
 public void run() {
 while (true) {
 System.out.println(
 “I’ll have a Wine”);
 yield();
 }
 }
}

90

Java Program Development

This above program will repeat until you press control-C.
Note the call to yield() which gives up control of the process
to other threads to insure that one thread does not hog all the
CPU. (This would not have been necessary if time-slicing was a
standard part of Java.)

12.3. Writing Thread Safe Code

In the “beer or wine” example, we used totally unrelated
threads that did not rely on each other, nor use any common
objects. When threads operate on or read the same objects or
memory space, there could be a problem with race conditions.
Because there is no way to be sure a thread will be allocated
resources in a FIFO (first in, first out) manner, there is no auto-
matic way to guarantee exactly when a thread will begin and at
what speed it will execute.

Consider the following example of a race condition between ten
threads that all check and raise the pressure it if it’s not above a
critical value:

91

Java Program Development

Example 19 pressure.java

public class pressure {
 static int pressureGauge = 0;
 static final int safetyLimit = 20;

 public static void main(String args[]) {
 CheckPressure p1[] = new CheckPressure[10];

 for (int i=0; i<10; i++) {
 p1[i] = new CheckPressure();

p1[i].start();
 }
 try {
 for (int i=0;i<10;i++) p1[i].join();
 }
 catch (Exception e) {}

 System.out.println(“guage reads” + pressureGauge +
 ”, safelimit is” + safetyLimit);
 }
}

class CheckPressure extends Thread {
 public void run () {
 RaisePressure();
 }

 void RaisePressure() {
 if (pressure.pressureGauge <
 pressure.safetyLimit-15) {
 try {
 sleep(100);
 }
 catch (InterruptedException e) {}
 pressure.pressureGauge += 15;
 }
 }
}

92

Java Program Development

The sleep() method is inserted here to insure that there will be
race conditions in the code. It stops the code for a desired num-
ber of milliseconds. The join() method forces the code to wait
till the thread is finished before continuing. The output of this
code is: “gauge reads150, safelimit is20”. Clearly we did not get
the desired effects due to the competition between threads to
write to the same pressure variable.

12.4. Controlling Thread Execution

Writing thread-safe code so that the threads stay out of each
other’s way is known as "mutual exclusion." To make a portion
of code mutually exclusive you use the synchronized key-
word. There are essentially two ways to use synchronization.

12.4.1. Synchronization at the Method Level

Mutual exclusion of a method over an entire class can be
achieved by adding “static synchronized” keywords and would
provide the same.

static synchronized void RaisePressure() {
 ...
}

This would mean that only one instance of the class could be in
the method RaisePressure at any particular time.

93

Java Program Development

12.4.2. Synchronization at the Block Level

Enclosing a block of code in parentheses preceded by
synchronized(Object Obj) allows you to synchronized a
portion of a method:

static Object Obj = new Object;

void RaisePressure() {
 synchronized(Obj) {
 if (pressure.pressureGauge <
 pressure.safetyLimit-15) {
 try {
 sleep(100);
 }
 catch (Exception e) {}

 pressure.pressureGauge += 15;
 }
 }
}

We must provide an object which is available to all threads
and therefore static to act as a key. A thread must grab the key
to enter a code block and gives up when it leaves. We could
have used an existing object in our example if we had one.

94

Java Program Development

12.5. Communicating Between Threads

Sometimes it is not just necessary to keep other threads out of
blocks of code at the same time but to have points in the code
where you need to give up/take control to/from another thread.

• notify() Release the lock and suspend.
Wakes up a single thread that is waiting on
this object's monitor. A thread waits on an
object's monitor by calling one of the wait
methods.

• notifyall() Wakes up all threads that are waiting on this
object's monitor. A thread waits on an object's
monitor by calling one of the wait methods.

• wait() Gives up lock and suspends until notified.
Waits to be notified by another thread of a
change in this object. The current thread must
own this object's monitor. The thread releases
ownership of this monitor and waits until
either of the following two conditions has
occurred:

1. Another thread notifies threads waiting
on this object's monitor to wake up either
through a call to the notify method or the
notifyAll method.

2. The timeout period, specified by the
timeout argument in milliseconds, has
elapsed.

95

Java Program Development

Only one thread at a time can own an object's monitor. The
notify(), wait() and notifyall() methods should only be called
by a thread that is the owner of this object's monitor. A thread
becomes the owner of the object's monitor in one of three ways:

1. By executing a synchronized instance method of that
object.

2. By executing the body of a synchronized statement that
synchronizes on the object.

3. For objects of type Class, by executing a synchronized
static method of that class.

• interrupt() Waking up a sleeping/waiting thread. The
interrupt method throws an exception that
must be caught by the sleeping thread using a
try/catch block.

try {
 sleep(some time);
}
catch (InterruptedException e) {...}

96

Java Program Development

13. Multimedia

Java has built in capabilities to load and display images, run
animations, and play audio.

13.1. Loading Images

Two image formats are currently supported—GIF and JPEG.
Images can be downloaded from a URL or loaded from a local
file (applications only).

Two identical getImage() methods are defined—one in the
java.applet.Applet package (for use in applets), the other
in java.awt.Toolkit .

Applets can download images from a Web server using either:

Image myImage = getImage(URL);
Image myImage = getImage(URL, filename);

Applications can load images from a local file or from a Web
server by first getting the toolkit associated with the current
graphics object and then using its getImage() method:

Image myImage =
 Toolkit.getDefaultToolkit().
 getImage(filenameorURL);

Note: A separate thread of execution is launched to down-
load images, enabling execution to continue.

Image size can be obtained using getWidth()
and getHeight() , both of which return -1 until the
image is fully loaded.

97

Java Program Development

13.2. Displaying Images

Once an image has been loaded, it can be displayed in its
original size or automatically scaled:

drawImage(myImage,
x, y,

 ImageObserver observer);

drawImage(myImage,
x, y,
width , height ,

 ImageObserver observer);

Both of these methods take an ImageObserver argument, which
is normally the component on which the image is displayed.
This enables the component to be notified of progress during the
image loading phase. Most components can simply specify
this . For example:

drawImage(myImage,0,0,this);

By obtaining its width and height, an image can be scaled
proportionally:

drawImage(myImage,
 0,0,
 myImage.getWidth()*2,
 myImage.getHeight()*2,
 this);

Note: The drawImage() method also runs asynchronously.

98

Java Program Development

13.3. Playing Audio Clips

Sounds can be played in an applet a single time (using
Applet’s play() method or continuously (using the AudioClip
interface).

Either of the following methods can be used to download a
sound from a Web server and play it one time:

play(URL);
play(URL, filename);

To play a sound continuously, you first get a reference to an
AudioClip object:

AudioClip au = getAudioClip(URL);
AudioClip au = getAudioClip(URL, filename);

and then use its loop method:

au.loop();

To stop the sound, use:

au.stop();

Currently, only 8-bit, 8000 Hz, one-channel Sun ".au" files are
supported.

99

Java Program Development

References

Many online and hardcopy references were used in creating this
class. Among the best of these are the following:

• "Just Java"
by Peter van der Linden
SunSoft Press (Prentice Hall)
ISBN: 0-13-272303-4

• "Graphic Java"
by David M. Geary and Alan L McClellan
SunSoft Press (Prentice Hall)
ISBN: 0-13-565847-0

• The Chen and Lee book (I forget the name)

• Sun Microsystem’s Java Web page at:
http://java.sun.com/

• The Gamelan Java Site:
http://www.gamelan.com/

• Java newsgroups

100

Java Program Development

Summary

The Java Development Kit is available free of charge from Sun
Microsystems (http://java.sun.com/). Versions are available
for Windows 95/NT, Solaris, and other operating systems.

There are several steps to the Java learning process:

1. becoming familiar with object-oriented principles
2. learning the Java language itself
3. learning to use classes and methods in Java class libraries

This class was designed as an introduction to Java. Due to its
popularity and the pace of innovations occurring in the com-
puter industry today, Java has evolved significantly in many
areas. But according to the "80/20" rule, while what we have
covered in this class represents only 20% of the Java language, it
is what you will be using 80% of the time.

In this class we developed Java programs "from scratch." There
are several Integrated Development Environments (IDEs) also
available.

Hopefully these notes will help you efficiently get started on the
road to becoming a Java programmer.

